III B. TECH I SEMESTER REGULAR EXAMINATIONS, FEB - 2022 FINITE ELEMENT METHODS (MECHANICAL ENGINEERING)

Time: 3 Hours
Max. Marks: 60
Note: Answer ONE question from each unit ($\mathbf{5 \times 1 2 = 6 0}$ Marks)

UNIT-I

1. a) Differentiate plane stress and plane strain problems with suitable examples.
b) Determine the strain components $\varepsilon_{\mathrm{x}}, \varepsilon_{\mathrm{y}}$ and γ_{xy} for the displacement field
$u=2 x^{2}+2 y^{2}+6 x y$ and $v=3 x+6 y-2 y^{2}$ at the point $x=-1, y=0$.
(OR)
2. a) Describe the basic steps involved in finite element analysis.
b) Discuss the various element shapes in FEA.

UNIT-II
3. Compute the displacements at nodes in elements shown in figure .

Take the Modulus of Elasticity as $70,000 \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{A}=200 \mathrm{~mm}^{2}$.

(OR)
4. Show that the central deflection of the beam of length $\mathrm{L} m$ (both the ends are [12M] fixed) carries a load of W at the center is given by $\mathrm{WL}^{3} / 192$ EI using FEM by dividing the beam into two elements.

UNIT-III

5. a) Discuss the properties of constant-strain triangular element.
b) The nodal coordinates of a triangular element are $1(1,3), 2(5,3)$ and $3(4,6)$. At a point ' P ' inside the element, the x -coordinates is 3.3 and the shape function $\quad N_{1}=0.3$. Determine the shape functions and y-coordinates of the point P.
(OR)
6. Evaluate the stiffness matrix for the axi-symmetric element shown in Figure. [12M] Take the Modulus of Elasticity as $2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and Poisson's ratio as 0.3 .

7. Find the Jacobian determinant [J] of the two dimensional element at $\xi=0$ and $\eta=0$ as shown in figure.
$1(1,1)$

(OR)
8. a) Describe about Gauss quadrature technique in numerical integration.
b) Check what order of the Gauss quadrature could exactly integrate the following. [6M] $\Phi=\left(2+3 \mathrm{x}+5 \mathrm{x}^{3}+8 \mathrm{x}^{6}\right)$.

UNIT-V

9. A metallic fin with thermal conductivity $\mathrm{k}=360 \mathrm{~W} / \mathrm{m}{ }^{\circ} \mathrm{C}, 0.001 \mathrm{~m}$ thick and 0.1 m long, extends from a plane wall whose temperature is $235^{\circ} \mathrm{C}$. Determine the temperature distribution and amount of heat transferred from the fin to the air at $20^{\circ} \mathrm{C}$ with $\mathrm{h}=9 \mathrm{~W} / \mathrm{m}^{2} \mathrm{C}$. Take the width of fin to be 1 m .
(OR)
10. Determine the Eigen values and Eigen vectors of the bar shown in figure. Take [12M] $\mathrm{E}=200 \mathrm{Gpa}, \rho=7862 \mathrm{~kg} / \mathrm{m}^{2}, \mathrm{~A}=6 \mathrm{~cm}^{2}$ and $\mathrm{L}=2.5 \mathrm{~m}$.

