III B. TECH I SEMESTER REGULAR EXAMINATIONS, FEB - 2022 FINITE ELEMENT METHODS (MECHANICAL ENGINEERING)

Time: 3 Hours

Note: Answer **ONE** question from each unit (5 × 12 = 60 Marks)

UNIT-I

1.	a)	Differentiate plane stress and plane strain problems with suitable examples.	[6M]
	b)	Determine the strain components ε_x , ε_y and γ_{xy} for the displacement field	[6M]
		$u = 2x^{2}+2y^{2}+6xy$ and $v = 3x+6y-2y^{2}$ at the point $x = -1$, $y = 0$.	
		(OR)	
2.	a)	Describe the basic steps involved in finite element analysis.	[6M]
	b)	Discuss the various element shapes in FEA.	[6M]
		UNIT-II	
3.		Compute the displacements at nodes in elements shown in figure .	[12M]

Take the Modulus of Elasticity as 70,000 N/mm² and $A=200 \text{ mm}^2$.

(OR)

4. Show that the central deflection of the beam of length L m (both the ends are [12M] fixed) carries a load of W at the center is given by WL³/192 EI using FEM by dividing the beam into two elements.

UNIT-III

- 5. a) Discuss the properties of constant-strain triangular element. [6M]
 - b) The nodal coordinates of a triangular element are 1(1,3), 2(5,3) and 3(4,6). [6M] At a point 'P' inside the element, the x-coordinates is 3.3 and the shape function $N_1 = 0.3$. Determine the shape functions and y-coordinates of the point P.

(OR)

Max. Marks: 60

R19

6. Evaluate the stiffness matrix for the axi-symmetric element shown in Figure. [12M] Take the Modulus of Elasticity as 2.1×10^5 N/mm² and Poisson's ratio as 0.3.

7. Find the Jacobian determinant [J] of the two dimensional element at $\xi=0$ and [12M] $\eta=0$ as shown in figure.

- 8. a) Describe about Gauss quadrature technique in numerical integration. [6M]
 - b) Check what order of the Gauss quadrature could exactly integrate the following. [6M]

 $\Phi = (2+3x+5x^3+8x^6).$

UNIT-V

9. A metallic fin with thermal conductivity $k=360 \text{ W} / \text{m}^{0}\text{C}$, 0.001 m thick and [12M] 0.1m long, extends from a plane wall whose temperature is 235^{0}C . Determine the temperature distribution and amount of heat transferred from the fin to the air at 20^{0}C with $h=9 \text{ W/m}^{2}\text{C}$. Take the width of fin to be 1 m.

(OR)

10. Determine the Eigen values and Eigen vectors of the bar shown in figure. Take [12M] $E = 200 \text{ Gpa}, \ \mathbf{\rho} = 7862 \text{ kg/m}^2, \text{ A} = 6 \text{ cm}^2 \text{ and } \text{L} = 2.5 \text{ m}.$

